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Abstract: Parkinson’s patients often suffer from depression and anxiety, for which there are no opti-
mal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum
neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to
the known improvement of motor performance. To quantify depression- and anxiety-like behav-
ior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were
applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results
in the forced swim test, open field test, and elevated plus maze test with the rotational behavior
induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like
behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected
rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with
Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility
frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like
behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects
of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after
various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment
of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal
injected BoNT-A may have some antidepressant-like effect on hemi-PD.

Keywords: hemiparkinsonian rat; 6-OHDA; botulinum neurotoxin-A; depression; striatum; behavior;
forced swim test; tail suspension test; open field test; elevated plus maze test; correlation analysis

Key Contribution: Intrastriatal botulinum neurotoxin-A improves depression-like behavior in
an animal model of Parkinson’s disease.

1. Introduction

Parkinson’s disease (PD) is the most common and complex age-related chronic neu-
rodegenerative movement disorder [1–4], hallmarked by the progressive loss of about
50–70% of dopamine neurons in the substantia nigra pars compacta (SNpc) and the re-
duction of dopamine (DA) in the caudate-putamen (CPu, striatum) [5–7], associated with
classical primary (akinesia, bradykinesia, tremor, rigidity, and postural instability) and sec-
ondary motor symptoms (e.g., gait disturbance, micrographia, precision grip impairment,
and speech problems) [8–11]. However, non-motor symptoms are increasingly recognized
as relevant in the disease-state, given the associated alterations in mood (depression and
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anxiety) and cognition [12–14]. Throughout PD progression, motor impairments are gener-
ally preceded by non-motor symptoms such as depression, anxiety, olfactory deficit, sleep
behavior disorder, and constipation, sometimes by up to ten years [13,15–20]. Non-motor
symptoms of PD are very often overlooked though they are increasingly being investigated
and have a very crucial impact on the clinical care and patient’s quality of life [10,20–24].

Depression is one of the most common psychiatric and neurodegenerative disorders;
every fifth individual suffers from a mood disorder in his or her lifetime [25–29]. The
World Health Organization estimates that major depression is the fourth most important
cause worldwide of loss in disability-adjusted life years [30]. Many studies have reported
an increased prevalence of depression in patients before the clinical onset of PD [31–38]. At
the same time, depression, anhedonia, and anxiety are one of the most prevalent and serious
comorbidities in patients with PD [39–44]. Estimates of the prevalence of depression in PD
patients vary from 2.7% to 90%, but most surveys have suggested 40–50% levels [45–53].
Depression in PD is associated with great cognitive impairment [48,54], more rapid disease
progression [55], and increased disability [56]. Theories associated with the etiology of
depressive symptoms in PD argue that depression in PD is complex, “reactive”, and
secondary to the psychosocial stress of chronic disease, and may result from changed
serotonin brain chemistry that is related to the central dopaminergic deficiency associated
with PD motor symptoms [57–60]. Anxiety is also highly prevalent in PD populations,
with 60% of PD patients reporting anxiety [13,21,61–64].

Treatment options for PD are limited, with most of the current approaches based on
restoration of DA levels that are effective in reducing motor symptoms, but associated
with significant side effects [65–67]. At the same time, despite the high prevalence of
neuropsychiatric symptoms in PD patients, there are also limited treatments targeting
neuropsychiatric symptoms of PD [13,26,51,68–74]. Depression in particular is a common
non-motor feature of PD, which frequently remains unrecognized and untreated [75,76].
In one of the few studies that explored the effects of antidepressants on cognitive func-
tion in PD patients, Dobkin et al., found no treatment-related improvements in cognition
associated with the administration of the paroxetine and nortriptyline despite successful an-
tidepressant effects [51,69]. Functional neuroimaging research showed that dopaminergic
medications alter regional brain response during cognitive task performance in PD patients,
but these alterations did not correlate with test performance [69,77–79]. Other studies even
mentioned that dopaminergic medications may enhance or impair cognitive function in
PD depending upon the nature of the task and basal levels of DA [68,80,81]. Notably,
Cools et al. [80] showed that cognitive inflexibility decreases on dopaminergic therapy
while impulsivity increases. Hälbig et al. [68] reported that PD patients’ performance on
emotion recognition and reaction time tasks was significantly worse while “on” versus
“off” dopaminergic therapy. Blonder et al. [69] examined the neuropsychological effects
of dopaminergic pharmacotherapy in Parkinsonian depression and compared cognitive
function in 28 non-demented depressed and non-depressed PD patients at two time-points:
following overnight withdrawal and after the usual morning regimen of dopaminergic
medications. The study revealed a significant interaction between depression and medi-
cation status on a facial naming task and three measures of verbal memory. In all cases,
depressed PD patients performed more poorly while on dopaminergic medication than
while off. The opposite pattern was seen in the non-depressed Parkinson’s group. There-
fore, the authors concluded that administration of dopaminergic medication to depressed
PD patients might carry unintended risks. Other studies demonstrated that some an-
tiparkinsonian drugs such as dopamine receptor agonists and MAO-B inhibitors like
selegiline and rasagiline, when administered in the recommended dose range for the treat-
ment of PD, exerted limited antidepressant efficacy in patients with PD [52,82–89]. Also,
mirtazapine, atomoxetine, and—interestingly—bupropion, a norepinephrine-dopamine
reuptake inhibitor antidepressant, are reported as not effective in treating depression in
PD patients [82,85,90–92].
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Anxiety disorders, particularly generalized anxiety, panic, and social phobia, occur as
a comorbidity in up to 40% of PD patients, and this rate is higher than in normal or other
disease comparison populations [93–100]. As with depression in PD, the optimal pharma-
cologic treatment for anxiety in these patients has not yet been established [50,98,101–104].

In PD, DA depletion leads to hyperactivity of cholinergic interneurons in the
striatum [105–108]. Botulinum neurotoxin-A (BoNT-A) inhibits the release of acetylcholine
(ACh) in the peripheral nervous system and is also thought to act as a local anticholinergic
drug when injected intrastriatally, i.e., into the CPu in hemiparkinsonian (hemi-) PD rats.
In hemi-PD rats, injection of 1 ng BoNT-A into the DA-depleted CPu significantly dimin-
ished apomorphine-induced rotational behavior for at least 3 months, the effect fading
thereafter [109–120].

Since the neurobiology and etiology of treatment options of depression in PD are
not fully understood, we tested here the effect of the injection of 1 ng BoNT-A into the
DA-depleted CPu of hemi-PD rats on depression-like and anxiety-like behaviors. It is
known that the cholinergic system, including the striatum, plays a central role not only in
cognition but also in depression [121–127] and anxiety [128–134].

It remains unclear whether alterations in dorsal or ventral corticostriatal circuits are
the primary site of basal ganglia functional alterations in depression, particularly in its early
stages [135]. Studies have generally focused on characterizing abnormalities in the “affec-
tive” ventral corticostriatal loops supporting emotional processes [136–141]. These results
were interpreted in accordance with the classical neuroanatomical scheme of topologically
organized ventral (“affective”) versus dorsal (“cognitive”) corticostriatal circuits [142–144].
Especially young, depressed patients demonstrated blunted ventral caudate/nucleus ac-
cumbens and putamen activation in the context of reward-based learning together with
predominantly increased activation of ventralmedial prefrontal, anterior cingulate, and
orbitofrontal cortical regions, i.e., major components of the so-called “ventral-affective”
corticostriatal circuit [140,145–147].

Evidence has emerged in support of primary functional connectivity alterations in-
volving dorsal as opposed to ventral corticostriatal circuits in adults [148] and young [149]
depressed patients. Furman and colleagues [148] reported decreased functional connec-
tivity between the ventral striatum and subgenual anterior cingulate cortex in adult de-
pressed patients but increased connectivity between the dorsal caudate and dorsolateral
prefrontal cortex.

Gabbay et al. [149] showed that adolescents with depression manifested increased
intrinsic functional connectivity (iFC) between all striatal regions bilaterally and the dorso-
medial prefrontal cortex (dmPFC), as well as between the right ventral caudate and the
anterior cingulate cortex (ACC). Major depressive disorder (MDD) severity was associated
with iFC between the striatum and midline structures including the precuneus, posterior
cingulate cortex, and dmPFC. Also, evidence from Kerestes et al., has implicated alterations
in the functional connectivity of dorsal “cognitive” corticostriatal loops in depressions [135].
The authors found that, compared with controls, depressed patients showed increased
connectivity between the dorsal caudate nucleus and ventrolateral prefrontal cortex bi-
laterally. Increased depression severity correlated with the magnitude of dorsal caudate
connectivity with the right dorsolateral prefrontal cortex. There were no significant differ-
ences between groups (medication-free patients with moderate-to-severe MDD and healthy
control participants) in connectivity of ventral striatal regions [135].

Up to now, the study of anxiety has primarily focused on the amygdala, bed nucleus of
the stria terminalis (BNST), hippocampus (HPC), and prefrontal cortex (PFC) [150,151]. Actu-
ally, the dorsal striatum is implicated in automatic responses and habit formation, the ventral
striatum may be more involved in anxiety, given its importance in emotional processes [152].

Several studies have shown the antidepressant efficacy of acetylcholinergic
drugs [153–156] or dosage-dependent antidepressant effects mostly of scopolamine [157–159].
While studies suggest that some selective serotonin reuptake inhibitors (SSRI) like fluorex-
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ine or citalopram can improve depression in PD patients, others report that fluorexine has
a lot of side effects and worsened the tremor and motor symptoms in PD patients [52,160–168].

In rodents, it has been shown that a 6-hydroxydopamine-(6-OHDA)-induced lesion
in the medial forebrain bundle (MFB) is a suitable model to investigate depressive-like
behavior and exploratory activity impairments associated with PD [169–172]. However,
most studies on depression- and anxiety-like behavior in the 6-OHDA model were done on
bilaterally lesioned animals of different strains of mice [173,174] and rats [101,170,175–181].
Interestingly, depression-like and anxiety-like behaviors in hemi-PD rats of the Wistar strain
were rarely examined; mostly Sprague Dawley or Wistar Han rats were used [74,169,181–183],
however, with contradictory results [74,182,184].

Depression-like behaviors have been demonstrated in rats with 6-OHDA lesions; how-
ever, the respective results have been inconsistent among studies [60,74,169,179–182,184–186].
In hemi-PD rats with complete or nearly complete unilateral 6-OHDA lesions of the MFB,
several studies found increased immobility time in the forced swim test (FST) and decreased
sucrose consumption, respectively [74,169,172]. In contrast, two studies using the same
6-OHDA lesion of the MFB reported that striatal DA depletion did not induce any change
in depression-like behaviors as measured by the FST and/or sucrose preference [182,184].
It should be taken into account that methodological aspects such as the exact site of the
6-OHDA injection, the extent of DA depletion, modifications of methods of behavior tests,
and time-point for the behavior tests could influence test results.

Likewise, the results of anxiety-like behaviors in different 6-OHDA rat models of
PD are also inconsistent [172]. In rats with unilateral MFB lesions, several studies found
that these rats showed increased anxiety-like behaviors in the elevated plus maze test
(EPM), locomotor chamber, or social interaction tests [182,186]. Other studies using the
same model, however, showed no effects on anxiety-like behaviors in the EPM, open field
test (OFT), or acoustic startle response test [169,184,187]. The discrepancy could be also
caused by the site of the 6-OHDA injection, the extent of the lesion, modification of anxiety
paradigms, and time frame for the behavior tests. In addition, several studies also observed
decreased or increased anxiety-like behaviors after bilateral 6-OHDA injection into the
dorsal striatum [179,180].

In 1981, Dr. Jankovic initially injected BoNT into a patient for treatment of ble-
pharospasm (BSP) [188] and subsequently published the results of the first double-blind,
placebo-controlled trial of BoNT in cranial–cervical dystonia [189]. Subsequently, BoNT-A
was approved in 1989 by the US Food and Drug Administration for the treatment of BSP
and other facial spasms. BoNT-A was successfully evolved into a therapeutic modal-
ity for a variety of movements disorders including some motor symptoms in PD [190]
such as dystonia [191–197], jaw tremors [198], limb rest tremor [198–200], freezing of
gait [201–204], sialorrhea [197,205–209], overactive bladder [210–213], constipation [214,215],
dyskinesias [192], captocormia [216–218], Pisa syndrome [219,220], dysphagia [221,222],
apraxia of lid opening [223,224].

Therefore, in the present study, we aimed to examine a possible therapeutic effect of
intrastriatal injections of BoNT-A on depression-like behavior in the hemi-PD rat model
induced by MFB lesion, using the forced swim test and tail suspension test, and on anxiety-
like behavior as well as a motor activity using the open field test and elevated plus
maze test.

2. Results
2.1. Spontaneous Motor Tests
2.1.1. Open Field Test

The OFT examines spontaneous motor and explorative activities as well as the anxiety-
like behavior of rats [225–227].

The walking speed during 10 min of the Sham + Sham (median: 5.65 cm/s) and
non-injected groups (median: 4.75 cm/s) did not differ significantly (Figure 1A). In con-
trast, both the 6-OHDA + Sham (median: 3.03 cm/s) and the 6-OHDA + BoNT (me-



Toxins 2021, 13, 505 5 of 37

dian: 2.91 cm/s) groups showed significantly lower walking speed compared with the
Sham + Sham group (p < 0.05) (Figure 1A). The further parameters related to curiosity
and exploration activity (rearing time) or to anxiety (center time/total time, grooming
frequency, number of boli) did not differ significantly between all four groups (p > 0.5)
(Figure 1B–E).

Figure 1. Open field test. (A) The walking speed of rats of the 6-OHDA + Sham and
6-OHDA + botulinum neurotoxin-A (BoNT) groups were significantly reduced in the OFT com-
pared with the Sham + Sham group. (B) The center time/total time, (C) the rearing time, (D) the
grooming frequency and (E) number of boli did not differ significantly between all four groups.
Asterisks indicate significant differences after performing all multiple comparison procedures in
pairs (Dunn’s method; * p < 0.05).

2.1.2. Elevated Plus Maze Test

This test further evaluates curiosity and anxiety-like behavior [228–230]. The walking
speed during a 5-min time span in the four groups did not differ significantly: 6-OHDA + Sham
(median: 3.08 cm/s), 6-OHDA + BoNT (median: 3.72 cm/s), Sham + Sham (median:
4.451 cm/s), non-injected (median: 3.82 cm/s) (Figure 2A). Also, the % of time spent on
open arms did not differ significantly between the groups during the 5 min of obser-
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vation time: 6-OHDA + Sham (median: 32.82%), 6-OHDA + BoNT (median: 38.44%),
Sham + Sham (median: 19.04%), non-injected (median: 28.05%) (Figure 2B).

Figure 2. Elevated plus maze test. (A) The walking speed and (B) the % time spent on open arms of rats of the
6-OHDA + Sham, 6-OHDA + BoNT, Sham + Sham, and non-injected groups did not differ significantly.

2.1.3. Forced Swim Test

The FST is one of the most commonly used animal models for assessing depression-
like behavior and also for the antidepressant efficiency of drugs [231–233].

The mean swimming time of the 6-OHDA + BoNT group (median: 88.59 s) was
significantly lower than that of the 6-OHDA + Sham group (median: 130.31 s) (p = 0.002)
(Figure 3A). The struggling latency in the 6-OHDA + BoNT group (median: 34.68 s)
was significantly increased compared with the Sham + Sham group (median: 14.88 s)
(p < 0.05) (Figure 3B), while the struggling time of the 6-OHDA + BoNT group (median:
468.00 s) was significantly increased compared with all other groups (medians: 314.078 to
404.91 s) (p < 0.01) (Figure 3C). The struggling frequency in the 6-OHDA + Sham group
was significantly higher (median: 76.10) than in all other groups: 6-OHDA + BoNT group
(mean: 34.67), Sham + Sham group (mean: 54.00), non-injected group (mean: 44.17)
(p < 0.05) (Figure 3D). Moreover, the struggling frequency in the 6-OHDA + BoNT group
was significantly lower compared with the 6-OHDA + Sham group (p < 0.001) and the
Sham + Sham group (p < 0.05) (Figure 3D).

As an important sign of the “lowered mood” and “despair” [234,235], the immobility
latency of the 6-OHDA + BoNT group was significantly longer (median: 155.16 s) compared
with all other groups: 6-OHDA + Sham group (median: 80.52 s, p < 0.001), Sham + Sham
group (median: 93.20 s, p < 0.01), non-injected group (median: 86.42 s, p < 0.01) (Figure 3E).
The immobility time of the 6-OHDA + BoNT group was significantly shorter (median:
26.883 s) compared with all other groups: 6-OHDA + Sham (median: 134.31 s), Sham + Sham
group (median: 196.56 s), non-injected group (median: 107.35 s) (p < 0.001) (Figure 3F).
Comparably, the immobility frequency in the 6-OHDA + Sham group was significantly
higher (mean: 63.60) than in all other groups: 6-OHDA + BoNT group (mean: 27.06,
p < 0.001), Sham + Sham group (mean: 48.36, p < 0.05), non-injected group (mean: 37.17,
p > 0.001) (Figure 3G). The immobility frequency in the 6-OHDA + BoNT group was
significantly lower compared with the 6-OHDA + Sham and the Sham + Sham groups
(p < 0.001) (Figure 3G).
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Figure 3. Forced swim test. (A) The swimming time of the 6-OHDA + BoNT-A group was significantly
shorter than that of the 6-OHDA + Sham group. (B) The struggling latency in the 6-OHDA + BoNT
group was significantly longer compared with the Sham + Sham group. (C) The struggling time of the
6-OHDA + BoNT group was significantly longer compared with all other groups. (D) The struggling
frequency in the 6-OHDA + Sham group was significantly higher than in all other groups. (E) The
immobility latency of the 6-OHDA + BoNT group was significantly longer compared with all other
groups. (F) The immobility time of the 6-OHDA + BoNT group was significantly shorter compared
with all other groups. (G) The immobility time of the 6-OHDA + BoNT group was significantly
shorter compared with all other groups. The immobility frequency of the 6-OHDA + BoNT group
was significantly lower than in the 6-OHDA + Sham group. Asterisks indicate significant differences
after performing all multiple comparison procedures in pairs (Dunn’s method; * p < 0.05, ** p < 0.01,
*** p < 0.001).

2.1.4. Tail Suspension Test

The tail suspension test (TST) is an animal model commonly used for screening
antidepressant drugs [236–238].

Rats in all four groups were scored as “0”. During the testing time of 60 s, none of the
rats showed a pathological immobility time in the TST.
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2.2. Correlating Open Field Test, Elevated Plus Maze Test, Forced Swim Test, and Apomorphine-
and Amphetamine-Induced Rotations

Following OFT, EPM, and FST, all rats underwent apomorphine- and amphetamine-
induced rotation tests about six weeks after vehicle or BoNT-A injection. With the cor-
relation analysis, it is being tested whether or not there is a dependency of measured
parameters in OFT, EPM, and FST on apomorphine- and amphetamine-induced rota-
tions. If that were the case, the outcome of drug-induced rotations could possibly predict
measures indicating depression-like or anxiety-like behavior in hemi-PD rats.

Neither parameter measured in the OFT significantly correlated with respective
apomorphine-induced rotations of rats of the 6-OHDA + Sham or 6-OHDA + BoNT groups
(Figure 4A–E). However, walking speed (rs = 0.648; p = 0.0377; Figure 5A) and center
time/total time (rs = 0.661; p = 0.0332; Figure 5B) positively correlated with decreasing
amphetamine-induced rotations in the 6-OHDA + Sham group. Rearing time (Figure 5C),
grooming frequency (Figure 5D), and the number of boli (Figure 5E) did not correlate
significantly with amphetamine-induced rotations in either group.

Figure 4. Scatter plots of parameters measured in the OFT and correlated with respective
apomorphine-induced rotations of rats of the 6-OHDA + Sham and 6-OHDA + Botulinum
neurotoxin-A (BoNT) groups. (A) Walking speed, (B) center time/total time, (C) rearing time,
(D) grooming frequency, and (E) the number of boli did not correlate significantly in either group.
Regression lines are displayed as solid lines and prediction intervals as dashed lines.
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Figure 5. Scatter plots of parameters measured in the OFT and correlated with respective amphetamine-induced rotations of
rats of the 6-OHDA + Sham and 6-OHDA + Botulinum neurotoxin-A (BoNT) groups. In 6-OHDA + Sham rats (A) walking
speed and (B) center time/total time positively correlated with decreasing rotations. (C) rearing time, (D) grooming
frequency, and (E) the number of boli did not correlate significantly in either group. Regression lines are displayed as
solid lines and prediction intervals as dashed lines. Green-colored regression lines and prediction interval lines indicate
significant differences (p < 0.05).

In EPM, neither walking speed nor center time/total time correlated significantly
with the respective apomorphine- or amphetamine-induced rotations in rats of both the
6-OHDA + Sham and 6-OHDA + BoNT groups (Figure 6A,B and Figure 7A,B).
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Figure 6. Scatter plots of parameters measured in the EPM and correlated with respective apomorphine-induced rotations
of rats of the 6-OHDA + Sham and 6-OHDA + Botulinum neurotoxin-A (BoNT) groups. (A) Walking speed and (B) center
time/total time did not correlate significantly in either group. Regression lines are displayed as solid lines and prediction
intervals as dashed lines.

Figure 7. Scatter plots of parameters measured in the EPM and correlated with respective amphetamine-induced rotations
of rats of the 6-OHDA + Sham and 6-OHDA + Botulinum neurotoxin-A (BoNT) groups. (A) Walking speed and (B) center
time/total time did not correlate significantly in either group. Regression lines are displayed as solid lines and prediction
intervals as dashed lines.

The FST revealed that struggling latency in 6-OHDA + Sham rats correlated positively
with increasing apomorphine-induced rotations (rs = 0.661; p = 0.0332; Figure 8B). In this
parameter rats of the 6-OHDA + BoNT group just missed a significant positive correlation
with increasing apomorphine-induced rotations (p = 0.054; Figure 8B). All other parameters
measured in the FST in 6-OHDA + Sham and 6-OHDA + BoNT groups did not show
significant correlations with apomorphine- and amphetamine-induced rotational behavior
(Figure 8A,C–G and Figure 9A–G).
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Figure 8. Scatter plots of parameters measured in the FST and correlated with respective apomorphine-induced rotations of
rats of the 6-OHDA + Sham and 6-OHDA + Botulinum neurotoxin-A (BoNT) groups. In 6-OHDA + Sham rats (B) struggling
latency correlated positively with increasing rotations. All other parameters in either group did not show significant
correlations: (A) swimming time, (C) struggling time, (D) struggling frequency, (E) immobility latency, (F) immobility
time, (G) immobility frequency. Regression lines are displayed as solid lines and prediction intervals as dashed lines.
Green-colored regression lines and prediction interval lines indicate significant correlation (p < 0.05).

Figure 9. Cont.
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Figure 9. Scatter plots of parameters measured in the FST and correlated with respective amphetamine-induced rotations of
rats of the 6-OHDA + Sham and 6-OHDA + Botulinum neurotoxin-A (BoNT) groups. All parameters in both groups did not
show significant correlations: (A) swimming time, (B) struggling latency, (C) struggling time, (D) struggling frequency,
(E) immobility latency, (F) immobility time, (G) immobility frequency. Regression lines are displayed as solid lines and
prediction intervals as dashed lines.

3. Discussion

The non-motor symptoms of PD are often present before diagnosis occurs in roughly
90% of patients; they dominate the clinical picture of advanced PD and contribute to
severe disability, impaired quality of life, and shortened life expectancy [13,73,239,240].
Furthermore, in contrast to the dopaminergic symptoms of the disease, for which treatment
is partially available, non-motor symptoms like depression and anxiety are common
symptoms for which there are presently no optimal treatments [13,74,184,241–244].

The prevalence of anxiety disorders in PD ranges from 25 to 43%, and depression
can affect up to 45% of patients with PD [245–251]. Depression is frequently the present-
ing symptom before significant motor symptoms are observed, and, therefore, may be
considered a risk factor for PD and a prodromal symptom of PD [28,37,48,240,252].

Depression is therefore more a consequence of the disease process and not simply
the result of psychological stress caused by the development of chronic disease. Anx-
iety is not simply a factor of motor impairment alone but reflects a neuropathological,
disease-related susceptibility [86].

Typically used anti-depression medication includes tricyclic antidepressants (TCA),
SSRI, serotonin and norepinephrine reuptake inhibitors (SNRI), monoamine-oxidase in-
hibitors (MAOI), and DA agonists [253]. Clinical trials have been conducted to investigate
their therapeutic effect on depression in PD patients. Barone et al. [254] reported that
treatment with rasagiline, an MAOI, did not improve symptoms of depression in PD
patients. Atomoxetine, an SNRI, was reported to be not efficacious for depression in PD but
might help to improve cognitive disorder and daytime sleepiness [255]. The DA agonist
pramipexole was found to be able to improve symptoms of depression in patients with PD
through a direct antidepressant effect [89]. A randomized clinical trial also established that
the TCA nortriptyline was efficacious in the treatment of symptoms of depression, but not
the SSRI paroxetine [255].

Selective serotonin reuptake inhibitors have the side effect of a worsening of resting
tremors in many PD patients [13,255,256]. Moreover, it actually appears that the biochemi-
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cal responsivity towards SSRI differs between PD patients with co-morbid depression and
patients with depression alone [257]. It is therefore of clinical importance to find novel
compounds for the treatment of depression and anxiety in PD [74].

The present experimental animal study is based on two crucial points: the respective re-
sults from the literature on the efficiency of anticholinergics on depression [153–159] includ-
ing the results that BoNT-A is effective for the treatment of patients with major depression
if injected into the brow muscles [258–266] and our own previous findings that bilaterally
injected intrastriatal BoNT-A reduced anxiety in naïve Wistar rats [117]. To avoid unwanted
side effects of systematically applied classical anticholinergic drugs, and hypothesizing that
BoNT-A inhibits the release of ACh also as a local anticholinergic drug, we injected BoNT-A
directly into the CPu in hemi-PD rats [109,110,112–114,116–118,120]. One ng of BoNT-A
injected into the DA-depleted striatum in hemi-PD rats significantly annulled apomorphine-
induced rotations for a minimum period of 3 months [109,110,112–114,116–118,120]. Thereafter,
rotation behavior gradually increased again during the next 6 to 9 months [109,110,118,120].

Interestingly, the treatment of glabellar frown lines with the injection of botulinum
toxin is one of the most prevalent procedures in esthetic medicine [185,267–269]. Recently,
three randomized controlled trials have consistently shown that such effects can be used
in the treatment of depression. Mostly female patients suffering from partly chronic and
treatment-resistant unipolar depression experienced a quick, strong, and sustained im-
provement in depressive symptoms after a single glabellar treatment with BoNT-A as a sole
or adjunctive therapy [258–260,262,266,267,270–273]. However, it is still obscure which
neurochemical or neuroanatomical pathways this therapeutic approach with BoNT follows.

Taken together, we hypothesized that BoNT-A could also have antidepressant-like
properties when injected intrastriatally into hemi-PD rats. Studying this, the behavioral ef-
fects of BoNT-A were examined in the FST and TST, measures of antidepressant-like activity.
OFT and EPM both evaluated anxiety-like behavior. Unilateral injection of 6-OHDA into
the MFB was used to produce distinct motor impairments detectable as DA agonist-induced
asymmetric rotating behaviors [274–276]. However, this rat model is also controversially
viewed as a suitable model for studying depressive behavior, anxiety, and exploratory dys-
function associated with PD [74,169–172,182,184,277,278]. To assess whether depression-
and/or anxiety-like activities seem to be dependent on motor impairment, we performed
a correlation analysis of drug-induced behaviors.

3.1. Readout of Test Results Indicating Anxiety-Like or Depression-Like Behavior
3.1.1. Anxiety

In the OFT exploiting the natural aversion of rodents to exposed fields, the most
relevant parameter indicating positive emotionality and reduced anxiety is the time spent
in the center of the arena [225,228–230,279–283]. Correspondingly, in the EPM, an in-
crease in relative time spent on open arms can be interpreted as inversely correlated with
anxiety [226,284–288]. Increased defecation and increased grooming can also be interpreted
as anxiogenic activities. Both tests are well-validated anxiety assays [289], and it is generally
accepted that both OFT and EPM should be assessed together [290–292].

3.1.2. Anxiety-Like Behavior Is Not Induced in Hemi-PD Rats and Not Altered by
Additional Intrastriatal BoNT-A

Hemi-PD animals showed a decrease in locomotor activity in the OFT, indicating that
DA depletion impairs the locomotor activity of rats [293]. These results corroborate the
significantly decreased scores of spontaneous movements compared with Sham-lesioned
animals [74,169,172,182,184,294–296]. The reduced locomotor activity in the OFT seemingly
depends on altered motor skills, however, probably in part also on the motivation to explore
a novel arena [169,180,297].

All other parameters examined in the OFT related to curiosity and exploration
activity (center time, rearing time, grooming frequency, number of boli) did not dif-
fer significantly between all four groups, corresponding to comparable results of other
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researchers [74,170,182,295,296]. Eskow Jaunarajs et al., (2010) showed that although en-
tries to center and vertical movements in the center were reduced in hemi-PD rats lesioned
in the left MFB, time in the center was not changed [182]. Similarly, Zhang et al. [74] and
Sun et al. [295] showed a reduction in motor activity in hemi-PD rats, but no significant
difference between the groups examined in terms of rearing activity. O’Connor et al. [296]
and Campos et al. [170] showed a reduction in motor activity in the OFT in hemi-PD rats
after a unilateral MFB lesion and no significant changes between the test groups in the
parameters investigated in connection with curiosity and exploratory activity.

Interestingly, most other studies described changes only in the locomotor activity
or selected parameters in the OFT [74,169,171,172,184] (for details see Supplementary
Materials Table S1).

Our present study showed the results of parameters related to curiosity and explo-
ration activity (walking speed, center time, rearing time, grooming frequency, and number
of boli). Our results in the EPM showed that the walking speed and the percentage of
time spent in the open arms during a 5-min period did not differ significantly in the four
groups. These results correspond to results from Delaville et al. (2012), which showed that
after unilateral 6-OHDA injection into the right MFB, DA depletion did not induce any
anxiety-like behavior: the number of entries, as well as the time spent in open arms, did
not change compared with Sham-lesioned animals. These authors [184] also found that
DA depletion is necessary, but not enough on its own to induce an anxious phenotype:
A single depletion of DA, noradrenaline (NA), and/or serotonin (5-HT) did not change
the time spent in the open arms or the number of entries into open arms in the EPM,
whereas 5-HT or NA depletion combined with that of DA induced anxiety-like behavior.
Carvalho et al. [169] also demonstrated no significant differences between the hemi-PD
and Sham-injected groups regarding the ratio between time spent on the open arms and
time spent on the closed arms. Interesting, only 2 studies [295,296] described anxiety-like
behavior in Sprague-Dawley hemi-PD rats: Sun et al., 2015 showed that the percent time
on open arms and open arms entries decreased; O’Connor et al., 2016 described that
6-OHDA-lesioned animals significantly spent less time in the open arm and ventured less
open arms entries than Sham-injected or naïve rats.

Since intrastriatal BoNT-A injection in hemi-PD rats did not change the parameters
related to curiosity and exploratory activity or fear, the BoNT-A-induced reduction in ACh
release in the striatum does not appear to have any significant influence on this behavior.

Taking together the results of the present study and the literature, hemi-PD rats do
not appear to be a suitable model for the investigation of anxiety-like behavior.

3.1.3. Depression

In the FST evaluating depression-like behavior, the most important signs of “lowered
mood” and “despair” are the immobility-associated parameters, i.e., latency, time, and
frequency [74,234,235,298,299]. Most studies described three predominant behaviors in the
modified FST: immobility, swimming, and climbing (struggling) time, or they analyzed
and interpreted the duration of the immobility time only [298–302]. Immobility time was
defined as a lack of motion of the whole body consisting of the small movements neces-
sary to keep the animal’s head above the water [303–305]. Long immobility time, which
reflects a state of helplessness/despair, was regarded as depression-like behavior [171,299].
Porsolt et al. [299] originally introduced immobility saying “immobility induced in these
experiments reflects a state of lowered mood in the rat” and in his original version only the
immobility time was measured. Also, studies of the antidepressant properties after unilat-
eral 6-OHDA lesion into the MFB almost only evaluated the immobility time [74,172,182]
and none of the other measurable parameters (Figure 3).

The FST is the most frequently used test to evaluate depression-like behaviors, in-
cluding those related to PD [306–309]. This test is based on the adoption that, when
placing an animal in a container filled with water, it will first make efforts to escape
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but eventually will exhibit immobility that may be considered to reflect a measure of
behavioral despair [74,298,299].

The FST is a very popular model in animal research for a number of reasons be-
cause it involves the exposure of the animals to stress, which was shown to play a role
in the tendency toward major depression [310–312] and also because pharmacological
treatment with antidepressants prior to the test has been shown to reduce immobility in
the FST [313–315].

Therefore, it is used as a screening assay for novel drugs with potential antidepressant
properties [313,316–318]. The procedure is relatively easy to perform and its results are
quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs
makes it a suitable screening test is one of the most important features leading to its high
predictive validity [298].

Depression appears in a combination of a short immobility latency, a long immobility
time, and a high immobility frequency, while reduced depression is accompanied by a long
immobility latency, a short immobility time, and a low immobility frequency.

Additionally, with respect to struggling, rats behaving in a depression-like manner
seemingly have short struggling latency, a short struggling time, and a high struggling
frequency. Reduced “despair” leads to the contrary observations of a longer struggling
latency, a longer struggling time, and a lower struggling frequency. The swimming time is
thought to be a parameter with a weaker interpretation possibility than immobility and
struggling. As can be seen in Figure 3A,C,F, the times for swimming, struggling, and
latency can be summed up to the duration of the 10-min FST experiment.

In the present study, hemi-PD rats demonstrated increased depression-like behaviors
compared with Sham- or non-injected rats; this was seen in increased struggling frequency
and increased immobility frequency (Figure 3D,G). Comparable with numerous observa-
tions in which no prolongation of the immobility time was found in rats with 6-OHDA
lesions [74,171,172,182,295,319], but in contrast to the only report by Zhang et al. [319],
who describe an increase of the immobility time, we could not observe any increase of the
immobility time in hemi-PD rats compared with animals with sham surgery (Figure 3F).

3.1.4. Depression-Like Behavior in Hemi-PD Rats Is Decreased by Intrastriatal BoNT-A

Intrastriatal BoNT-A injection ameliorated key signs of “decreased mood” and
“despair” [234,235] in hemi-PD rats, as demonstrated by the significant improvement
of six of the seven parameters that were measured in the FST: in hemi-PD rats, BoNT-A
significantly reduced swimming time (Figure 3A), increased struggling time (Figure 3C),
decreased struggling frequency (Figure 3D), increased immobility latency (Figure 3E),
decreased immobility time (Figure 3F), and decreased immobility frequency (Figure 3G).

In PD, both characteristic motor symptoms and a variety of non-motor symptoms
are found [1–4,15–20,61]. Depression is one of the most frequent non-motor symptoms of
PD [45–48,50–53,55], however, the underlying mechanisms of the PD-associated depression
have not been adequately clarified [320–322]. Seemingly, PD-associated depression is
caused by multiple factors including genetic predisposition, biochemical disturbances,
and psychological events [323,324]. The pathophysiology of depression in PD might
also relate to changes in the dopaminergic, noradrenergic, serotonergic, and cholinergic
systems [26,321,325,326].

Post mortem in vitro receptor autoradiography and in vivo PET studies in PD patients
do not show any clear results concerning D1 receptor density in the CPu even though
DA concentration is drastically reduced: striatal D1 receptor density is described as being
unaltered [327,328], decreased [329] or increased [330]. However, an obvious increase of
D2/D3 receptor density of about 25% was found in human PD patients [331,332]. Nora-
drenaline transmitter concentration is reduced in the CPu of PD, noradrenergic α1 and α2
receptor densities in the CPu of PD patients are not changed [333]. The density of serotoner-
gic 5HT2A receptors in the CPu of PD patients is not altered [334], although 5-HT levels and
typical serotonin metabolites and transporters are significantly decreased to various extents
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in these patients [335]. A hypercholinism of the CPu in PD is constantly found [105–108].
Studies on muscarinic acetylcholine receptor (mAch) binding in the CPu of PD patients
using post-mortem brain tissue [336–338] provided contradictory results: Lange et al. [337]
postulate a decrease in M1 receptor density in the striatum, McOmish et al. [338] found no
change. Unaltered M2 receptor densities in PD brain tissue compared with controls are
communicated [337,338], contrasting to increased M3 receptor density in the CPu of PD
patients [338]. Moreover, nicotinic acetylcholine receptor (nAch) binding in the CPu of
PD patients is reduced in most reports: Aubert et al. [336], using in vitro receptor autora-
diography, reported a decrease by 74%, and Meyer et al. [339], using PET analysis with
2-[18F]FA-85380, found a reduction of 20%.

Interestingly, roughly comparable results can be found in the DA-depleted CPu of
hemi-PD rats. In hemi-PD rats, a slightly elevated D1 receptor density was found in the
CPu early post-lesion that decreased with increasing post-lesion survival. Nearly normal
values were reached 9 months post-lesion [340]. A consistent increase of 20–40% of the
D2/D3 receptor density in the CPu is revealed in the CPu [341–352], also seen in our own
studies [340]. The analysis of α1 receptors in the CPu of hemi-PD rats did not reveal any
alterations [340], however, α2 receptor density significantly increased by up to about 30%
in the DA-depleted CPu nine months post-lesion. In hemi-PD rats, striatal 5HT2A receptor
density was massively and constantly reduced by 50% [340].

In hemi-PD rats, all mAch receptor densities were mainly decreased ipsilateral to
the lesion: M1 receptor density—9%, M2 receptor density—16%, M3 receptor density
resembled vehicle-injected rats [353]. Hemi-PD rats showed a massive ipsilateral decrease
in striatal nAch receptor density of about 50% [353].

We hypothesize that intrastriatal BoNT-A application in hemi-PD rats reduced
depression-like behavior due to changes in the densities of transmitter receptors. The
CPu of the DA-depleted and intrastriatally BoNT-A-injected rats indeed displayed changes
in the direction of a normalization of the 6-OHDA-induced pathology. In hemi-PD rats, D1
receptor density in the CPu was left unaltered by BoNT-A. BoNT-A significantly reduced
the pathologically increased D2/D3 receptor density. Alpha1 and α2 receptor densities in
the CPu were found unaltered after BoNT-A, as was the 5HT2A receptor density [340].

Concerning muscarinic receptor densities in the CPu, BoNT-A did not change M1
receptors. Both receptor densities of M2 (agonist binding) and M2 (antagonist binding)
showed a BoNT-A-induced significant normalization of interhemispheric differences. M3
receptor and nAch receptor densities were nearly unaltered after additional BoNT-A [353].

Taking together the results of BoNT-A-induced changes in receptor binding in hemi-PD
rats, it can be speculated that the partial normalization can be correlated with
an improvement of depression-like behaviors. Interestingly, significant correlations were found
between various receptor densities and apomorphine-induced rotation behavior [340,353].

3.1.5. Tail Suspension Test

The TST has been used extensively as an acute test of antidepressant-like efficacy.
Briefly, when rodents are suspended by their tails with no possibility of escape, they will
eventually enter a state of learned helplessness in which a significant amount of time
is spent hanging immobile [236]. The test appears to have good predictive validity for
antidepressant drugs, in that this immobility is reduced following pre-treatment with
standard antidepressant agents [236,237]. We found that rats in all the experimental groups
scored 0: they showed no pathological immobility time in the TST over a period of 60 s.

3.1.6. Correlating Parameters Indicative for Anxiety- and Depression-like Behaviors

We also analyzed whether there was a correlation between the expression of anxi-
ety parameters (EPM: % time in open arms; OFT: center/total time) and the expression
of depression parameters (struggling frequency, immobility frequency, struggling time,
immobility time) between the 6-OHDA + Sham and Sham + Sham groups or between the
6-OHDA + Sham and 6-OHDA + BoNT groups.
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There were no significant relationships between any pair of variables in the Spearman
correlation table (p > 0.050) with only one exception (Supplementary Materials Table S2).
The immobility time positively correlated with center/total time in the 6-OHDA + Sham
group (rs = 0.620; p = 0.048) (Figure 10).

Figure 10. Scatter plot correlating the immobility time measured in the FST and center/total time
measured in the OFT of rats of the 6-OHDA + Sham and Sham + Sham groups. Regression lines are
displayed as solid lines and prediction intervals as dashed lines. Green-colored regression lines and
prediction interval lines indicate significant correlation (p < 0.05).

The positive correlation between the immobility time and center/total time in the
6-OHDA + Sham group means that, with increasing severity of the depression-like behav-
ior, the severity of the anxiety-like behavior decreases. Although Ho et al. [354] found in
naïve male Wistar rats no relationship between performance on the FST and EPM, a study
from Estanislau et al. [355] in male Wistar rats reported an inverse relationship between
performance on the FST and the EPM: animals that measured high on depression-like
behaviors were low on anxiety-like behaviors [355,356]. Thus, this inverse relationship
between depression- and anxiety-like behaviors shown in naïve animals corroborates our
results in hemi-PD rats. Surprisingly, the results in rats diametrically oppose clinical ob-
servations in PD patients. Interestingly, depression in patients rarely strikes alone [354] in
clinical populations, depression is highly comorbid with anxiety disorders with estimates
as high as 80% [357].

3.1.7. Correlating Open Field Test, Elevated Plus Maze Test, Forced Swim Test and
Apomorphine- and Amphetamine-Induced Rotations

In PD, affective symptoms seemingly are not influenced by the severity of motor symp-
toms. Multiple groups have confirmed that neither depression nor anxiety are correlated
with motor disability [49,358–361]. In fact, patients often report depression and anxiety
although their motor status is improved by pharmacotherapy or neurosurgery [362–364].

In hemi-PD rats, correlation analysis was done to test if the outcome of the routinely
used drug-induced rotation tests could possibly predict measures indicating depression-
like or anxiety-like behavior in hemi-PD rats. Only a few significant correlations were
found in rats of the 6-OHDA + Sham group. Increasing amphetamine-induced rotations
correlated with decreasing anxiety-like behavior, as seen in the center/total time (%) in the
OFT. Increasing apomorphine-induced rotations correlated with increasing depression-like
behavior, as seen in the struggling latency in the FST.

It can be summarized that the parameters quantifying motor and non-motor behaviors
are mostly not correlated in hemi-PD rats. Although an additional BoNT-A injection into
the striatum of hemi-PD rats massively altered drug-induced rotation values and also
improved depression-like behavior, respective significant correlations were not found in
the 6-OHDA + BoNT group.
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Thus, with respect to the missing correlation of parameters measuring depression or
anxiety with motor disabilities, hemi-PD rats and PD patients are comparable.

4. Conclusions

In hemi-PD rats, intrastriatally applied BoNT-A has a positive effect on motor dys-
function without impairing cognitive and peripheral cholinergic functions [109–120].

The effects of BoNT-A injected into the dopamine-depleted CPu are reminiscent of
the actions of several antidepressant agents [365,366]. Data suggest that BoNT-A is not
only useful to improve motor behavior, but also could positively influence non-motor
symptoms, such as depression and neurorestorative mechanisms in Parkinsonism.

Thus, locally applied BoNT-A, or other botulinum neurotoxins might be useful in
treating brain dysfunctions requiring a deactivation of local brain activity, especially by
lowering the availability of acetylcholine. Advantageously, the effect of local BoNT-A is
time-limited and reversible. Optimistically, in the future and after experiments in primates,
BoNTs might be used in clinical application as an effective and individually-tailored
“chemical neurosurgical approach” as a local anticholinergic drug for treating striatal
hypercholinism in PD and possibly also epilepsy [367,368].

5. Materials and Methods
5.1. Animals

Fifty-one young adult, 3-month-old, male Wistar rats (strain Crl:WI BR) weighing
250–290 g and obtained from Charles River Wiga (Sulzfeld, Germany) either assigned to
non-injected (naïve controls, n = 12), controls (Sham 6-OHDA + Sham BoNT-A, further
on named Sham + Sham, n = 11), Sham BoNT-A-injected hemi-PD rats (6-OHDA + Sham
BoNT-A, further named 6-OHDA + Sham, n = 10), and BoNT-A-injected hemi-PD rats
(further named 6-OHDA + BoNT, n = 18) were used for this study. Animals were housed
in standard cages in a temperature-controlled room (22 ◦C ± 2 ◦C) under a 12 h light/dark
cycle with free access to food and water 24 h a day. All procedures used in the present
study complied with the guidelines on animal care. All experiments were approved by
the State Animal Research Committee of Mecklenburg-Western Pomerania (LALLF M-V
7221.3-1.1-003/13, 26 April 2013; LALLF M-V 7221.3-1-056/18, 26 November 2018).

5.2. Injections of Drugs
5.2.1. 6-OHDA Lesion Surgery

All surgical manipulations were carried out under aseptic conditions. Animals, weigh-
ing 290–310 g at the time of the first surgery, were deeply anesthetized by intraperitoneal
(i. p.) injection of ketamine (50 mg kg−1 body weight (BW)) and xylazine (4 mg kg−1 BW).

To induce an experimental hemi-PD, unilateral injection of 24 µg 6-hydroxydopamine
hydrochloride (6-OHDA, Sigma-Aldrich, St. Louis, MO, USA) dissolved in 4 µL 0.1 M
citrate buffer over 4 min via a 26-gauge 5 µL Hamilton syringe was performed into the
right MFB using a stereotactic frame (Stoelting, Wood Dale, IL, USA). The Sham hemi-PD
rats received 4 µL of the 0.1 M citrate buffer. Thereafter, the needle was left in place for
a further 5 min to avoid reflow. The stereotactic injection was performed at the following
coordinates with reference to bregma: anterior-posterior = −2.3 mm, lateral = 1.5 mm to the
right, ventral = −9.0 mm [369]. The success of the lesion was verified by an apomorphine-
induced rotation test [370,371] 4 weeks after the 6-OHDA application. Animals displaying
more than four contralateral rotations/min—indicating a unilateral death of about 97% of
the nigrostriatal DAergic neurons [371]—were tested further. Finally, brains were studied
morphologically by TH-immunohistochemistry. 6-OHDA injected unilaterally into the
right medial forebrain bundle (MFB) induced nearly complete death of dopaminergic
neurons of the respective SNpc [109,110,118,120] and degeneration of nigrostriatal fibers
and terminals in the striatum (Figure 11).
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Figure 11. Representative frontal sections immunohistochemically stained against tyrosine hydroxylase showing the
telencephalon (A,C,E,G) and the midbrain including substantia nigra pars compacta (B,D,F,H) from the experimental groups.
(A,B) 6-OHDA + Sham BoNT-A; (C,D) 6-OHDA + BoNT-A; (E,F) Sham 6-OHDA + Sham BoNT-A; (G,H) non-injected. l, r:
left and right hemispheres.

5.2.2. Injection of BoNT-A into the Striatum

Six weeks after the 6-OHDA lesion, animals underwent a second stereotactic surgery.
Under the same operative conditions, a solution of either BoNT-A (dissolved in phosphate-
buffered saline supplemented with 0.1% bovine serum or vehicle (equal amount of PBS–
BSA 0.1%) according to the same procedure (Sham BoNT-A) was injected into the right
CPu at two sites [109–116,118,120]. Thus, rats received 2 × 1 µL BoNT-A solution (Lot
No. 13028A1A; List, Campbell, CA, USA; purchased via Quadratech, Surrey, UK) contain-
ing a total of 1 ng BoNT-A (n = 18) or vehicle solution (n = 10). The respective coordinates
with reference to bregma were: anterior-posterior = +1.3/−0.4 mm, lateral = 2.6/3.6 mm
to the right, and ventral = −5.5 mm [369]. After each injection applied over 4 min, the
cannula was left in place for another 5 min before being retracted to allow diffusion of the
drug. BoNT-A was handled and stored according to the manufacturer’s instructions.

5.3. Behavioral Testing

Drug-induced rotational behavior, following apomorphine and amphetamine appli-
cation, was measured about 4 weeks after the 6-OHDA or vehicle injection into the right
MFB, and also 4 weeks after the ipsilateral intrastriatal injection of BoNT-A or vehicle, with
the interval of 3 days between apomorphine and amphetamine application.

Spontaneous motor tests, i.e., open field, elevated plus maze, forced swim, and tail
suspension tests were performed 4 weeks after the intrastriatal injection of BoNT-A or
vehicle with the interval of 3 days between every single test.

One hour before starting each behavior test, the animals were kept in the examination
room for about 1 h to become familiar with the novel environment.

5.3.1. Drug-Induced Rotation Tests (Apomorphine, Amphetamine)
Apomorphine-Induced Rotation Test

To verify the success of the 6-OHDA lesion, the apomorphine-induced turning rate
was determined 4 weeks after the 6-OHDA or vehicle injection. This test provides a sen-
sitive and rapid behavioral correlate of the basal ganglia circuit disturbance caused by
the unilateral lesion of the SNpc [370,372,373]. Apomorphine (0.25 mg/kg, Teclapharm,
Lüneburg, Germany) dissolved in saline was injected i. p. and, after a waiting time of
5 min to ensure cerebral uptake, rotations were monitored for 40 min in a self-constructed,
automated rotometer, modified according to Ungerstedt and Arbuthnott [371]. Full rota-
tions of 360◦ were counted over 40 min and the mean number of rotations per minute was
calculated (anti-clockwise: +, clockwise: −).
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Amphetamine-Induced Rotation Test

Three days following the apomorphine testing, the amphetamine-induced rotational
behavior was monitored as well [374–376], for the degree of rotational behavior after
both drugs, apomorphine, and amphetamine, seemingly do not correlate in hemi-PD
rats [376–378]. Rats were intraperitoneally injected with D-amphetamine sulfate (2.5 mg/kg,
dissolved in 0.9% NaCl, Sigma Aldrich, München, Germany), and after a waiting time of
15 min were monitored for 60 min as described above.

5.3.2. Spontaneous Motor Tests
Open Field Test

The spontaneous horizontal locomotor activity, anxiety, and willingness to explore
a new environment were evaluated via the OFT, originally described by Hall [225,379].
Rats were adapted during the dark phase for 1 h before testing in the examination room.
Animals were individually placed in a square OFT arena of 50 × 50 cm (walls 40 cam high),
which was positioned inside an isolation box (TSE Systems, Bad Homburg, Germany).
The 16 quadratic subfields of the square were divided into 12 peripheral and 4 central
areas by a grid in the tracking software. Illumination of the OFT was provided by a white
photo bulb at 450 l×. Animals were monitored online by a video camera placed inside
the isolation box and tracked using the VideoMot2 Software (TSE Systems, Bad Homburg,
Germany). This paradigm mimicked the natural conflict in rats between the tendency to
explore a novel environment and the tendency to avoid a brightly lit open arena [380,381].
Rats were tested once for 10 min, then the apparatus was cleaned with 70% ethanol and
dried with paper towels before testing the next animal to avoid odor interference in the
test response. The walking speed of the animals, the time spent in the center and the edges
of the OFT arena, the rearing time, and the grooming frequency [382,383] were evaluated.

Elevated Plus Maze Test

To assess the exploration, the locomotor activity, and anxiety-related behavior level,
a self-made EPM was used [117]. This test is based on the natural aversion of rats for open
and elevated areas [384]. The EPM apparatus consisted of two open arms and two closed
arms (arm length 425 mm, arm width 145 mm, wall height 225 mm, width of ledges 10 mm)
arranged in a way that two pairs of identical arms were placed opposite to each other. The
arms emerged from a central platform and the entire apparatus was raised to a height of
90 cm above floor level. One h before the test start, the animals were kept in a dark phase
in the examination room. Under dim light conditions (red photo bulb, 3.5 l×), rats were
placed individually on the central platform facing one open arm. In between, the maze was
carefully cleaned with a wet towel. During the 5 min test, anxiety was evaluated through
two behavioral parameters: (1) time on the open arms (s), (2) presence on open arms (%
open time), and (3) walking speed. All measures are inversely related to the anxiety level
in rodents. Since anxiolytic and anxiogenic effects can be confounded by changes in motor
activity, locomotion was additionally evaluated based on closed arm entries and total arm
entries [284]. These parameters are considered to be the best indicators of the locomotor
activity of rodents placed on the EPM [228]. The operational criterion for arm entry was
the presence of the whole body and all four paws on the arm. Behavior was recorded with
a video camera mounted directly 1 m above the EPM apparatus and tracked using the
VideoMot2 Software (TSE Systems, Bad Homburg, Germany).

Forced Swim Test

The traditional FST was developed by Porsolt et al. [299] and is the most widely
used and well-validated test for assessing depression-like behavior in rats. It has been
successfully used to screen the efficacy of new antidepressant drugs [231,299,385,386] and
has reasonably good predictive value for antidepressant potency in humans [387]. For
our experiments, we used a modified, animal-friendly version of the forced swim test
according to Gregus et al. [388].
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The test was conducted in a Plexiglas swim tank (25 cm wide × 60 cm high) with
no top. The tank was filled with 27 ◦C (±2 ◦C) water to a depth of 30 cm. Each rat was
carefully placed into the forced-swim tank for 10 min. During this time, the rat’s behavior
was recorded and monitored with a video camera mounted 1 m directly above the tank
and tracked using the VideoMot2 Software (TSE Systems, Bad Homburg, Germany). At the
end of the 10 min, the rat was removed from the tank, dried off with a towel, and placed
back into its home cage to further dry under a heat lamp for 20 min. The water in the tank
was changed after each rat. Behaviors scored in the test included: (1) time spent struggling,
observed when the rat’s front paws break the surface of the water and the rat actively
searches and struggle to get out of the tank; (2) time spent swimming, observed when the
rat makes active swimming motions that are beyond those needed to simply stay afloat,
but less than those observed when struggling; (3) time spent immobile, observed when the
rat makes very few (enough to keep from drowning) movements with its body [389]. The
latency to become immobile was scored as well. Depression-like behavior was inferred
from increases in time spent immobile during the test [299].

Tail Suspension Test

The TST is a behavioral despair model of depression [236,390,391]. It is mostly applied
in rodents to predict antidepressant potential by a decreasing immobility period produced
by several different classes of antidepressant drugs [392,393]. TST is commonly used for
mice and adapted to rats [394,395]. We utilized a modified version of the tail suspension
test: rats were slowly lifted by their tails—grasping the base of the tail—for a total of 60 s.
The time (s) the rat spent immobile, a correlate of depression-like behavior was analyzed.

5.4. Data Analysis

In general, an overall significance level = 0.05 was used. Normally distributed data
were subjected to one-way ANOVA using SigmaPlot 14 Software (Systat Software, Inc.,
San Jose, CA 95110, USA). In the case of statistically significant different mean values, data
were subjected to all pairwise multiple comparison procedures (Holm–Sidak method).

If the normality test (Shapiro–Wilk) or equal variance test (Brown–Forsythe) failed,
a Kruskal–Wallis one-way ANOVA on ranks was done. In the case of statistically significant
different median values among the treatment groups, a multiple comparison procedure
(Dunn’s Method) was used.

To determine the strength of association of each behavioral test to apomorphine- or
amphetamine-induced rotations, we performed Spearman rank-order correlation analyses.
Spearman rank-order correlation is a nonparametric test that does not require the data
points to be linearly related with a normal distribution about the regression line with
constant variance. The Spearman rank-order correlation coefficient does not require the
variables to be assigned as independent and dependent. Instead, only the strength of
association is measured. Regression lines and prediction intervals were inserted into
the resulting scatter plots. Prediction intervals also called the confidence interval for the
population, describe the range where the data values will fall a percentage of the time for
repeated measurements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13070505/s1, Table S1: Overview of the preclinical studies investigating the depressive-
and anxiety-like behavior after unilateral lesion into the MFB in rats, Table S2: Spearman correlation
table. Green colored p values indicate significant correlation.
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MFB medial forebrain bundle
M1 muscarinic M1 receptor
M2 muscarinic M2 receptor
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